Quantum chemical investigation of thermal cis-to-trans isomerization of azobenzene derivatives: substituent effects, solvent effects, and comparison to experimental data.
نویسندگان
چکیده
Quantum chemical calculations of various azobenzene (AB) derivatives have been carried out with the goal to describe the energetics and kinetics of their thermal cis --> trans isomerization. The effects of substituents, in particular their type, number, and positioning, on activation energies have been systematically studied with the ultimate goal to tailor the switching process. Trends observed for mono- and disubstituted species are discussed. A polarizable continuum model is used to study, in an approximate fashion, the cis --> trans isomerization of azobenzenes in solution. The nature of the transition state(s) and its dependence on substituents and the environment is discussed. In particular for push-pull azobenzenes, the reaction mechanism is found to change from inversion in nonpolar solvents to rotation in polar solvents. Concerning kinetics, calculations based on the Eyring transition state theory give usually reliable activation energies and enthalpies when compared to experimentally determined values. Also, trends in the resulting rate constants are correct. Other computed properties such as activation entropies and thus preexponential rate factors are in only moderate agreement with experiment.
منابع مشابه
Kinetics and Energetics of Thermal Cis-Trans Isomerization of a Resonance-Activated Azobenzene in BMIM-Based Ionic Liquids for PF6−/Tf2N− Comparison
BMIM PF6 (1-butyl-3-methylimidazolium hexafluorophosphate) and BMIM Tf2N (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) are two conventional room-temperature ionic liquids widely employed and investigated as reaction media. Despite the presence of the same imidazolium ring in their structure they are different in many chemical and physical properties due to the nature of the an...
متن کاملKinetics and Energetics of Thermal Cis-Trans Isomerization of a Resonance-Activated Azobenzene in BMIM-Based Ionic Liquids for PF₆-/Tf₂N- Comparison.
BMIM PF₆ (1-butyl-3-methylimidazolium hexafluorophosphate) and BMIM Tf₂N (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) are two conventional room-temperature ionic liquids widely employed and investigated as reaction media. Despite the presence of the same imidazolium ring in their structure they are different in many chemical and physical properties due to the nature of the an...
متن کاملPolarity controlled reaction path and kinetics of thermal cis-to-trans isomerization of 4-aminoazobenzene.
Spectral and kinetic behavior of thermal cis-to-trans isomerization of 4-aminoazobenzene (AAB) is examined in various solvents of different polarities. In contrast to azobenzene (AB), it is found the rate of thermal isomerization of AAB is highly dependent on solvent polarity. Accelerated rates are observed in polar solvents as compared to nonpolar solvents. Moreover, a decrease in the barrier ...
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملLight-driven molecular switches in azobenzene self-assembled monolayers: effect of molecular structure on reversible photoisomerization and stable cis state.
Both the reversible trans<-->cis photoisomerization and slow thermal back cis-to-trans isomerization of azobenzene-functionalized self-assembled monolayers on gold surfaces have been achieved by rationally designed single-component azobenzene thiol.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 113 24 شماره
صفحات -
تاریخ انتشار 2009